skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Allan, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change poses a threat to biodiversity, and it is unclear whether species can adapt to or tolerate new conditions, or migrate to areas with suitable habitats. Reconstructions of range shifts that occurred in response to environmental changes since the last glacial maximum (LGM) from species distribution models (SDMs) can provide useful data to inform conservation efforts. However, different SDM algorithms and climate reconstructions often produce contrasting patterns, and validation methods typically focus on accuracy in recreating current distributions, limiting their relevance for assessing predictions to the past or future. We modeled historically suitable habitat for the threatened North American tree green ashFraxinus pennsylvanicausing 24 SDMs built using two climate models, three calibration regions, and four modeling algorithms. We evaluated the SDMs using contemporary data with spatial block cross‐validation and compared the relative support for alternative models using a novel integrative method based on coupled demographic‐genetic simulations. We simulated genomic datasets using habitat suitability of each of the 24 SDMs in a spatially‐explicit model. Approximate Bayesian computation (ABC) was then used to evaluate the support for alternative SDMs through comparisons to an empirical population genomic dataset. Models had very similar performance when assessed with contemporary occurrences using spatial cross‐validation, but ABC model selection analyses consistently supported SDMs based on the CCSM climate model, an intermediate calibration extent, and the generalized linear modeling algorithm. Finally, we projected the future range of green ash under four climate change scenarios. Future projections using the SDMs selected via ABC suggest only minor shifts in suitable habitat for this species, while some of those that were rejected predicted dramatic changes. Our results highlight the different inferences that may result from the application of alternative distribution modeling algorithms and provide a novel approach for selecting among a set of competing SDMs with independent data. 
    more » « less
  2. It is widely recognized that nitrogen (N) inputs from watersheds to estuaries are modified during transport through river networks, but changes within tidal freshwater zones (TFZs) have been largely overlooked. This paper sheds new light on the role that TFZs play in modifying the timing and forms of N inputs to estuaries by (1) characterizing spatial and temporal variability of N concentrations and forms in the TFZs of the Mission and Aransas rivers, Texas, USA, and (2) examining seasonal fluxes of N into and out of the Aransas River TFZ. Median concentrations of dissolved inorganic N (DIN) were lower in the TFZs than in upstream non-tidal river reaches and exhibited spatial gradients linked to locations of major N inputs. These spatial patterns were stronger during winter than summer. The forms of N also changed substantially, with DIN changing to organic N (primarily phytoplankton) within the TFZs. Discharge and N flux comparisons for the Aransas River TFZ demonstrated that secular tidal patterns modulate the timing of N export during baseflow conditions: N export far exceeded input during winter, whereas export and input were relatively balanced during summer. While more data are needed to build an annual N budget, our results show that TFZ can change the timing and form of N export immediately upstream of estuaries. 
    more » « less
  3. Environmental DNA (eDNA) data make it possible to measure and monitor biodiversity at unprecedented resolution and scale. As use-cases multiply and scientific consensus grows regarding the value of eDNA analysis, public agencies have an opportunity to decide how and where eDNA data fit into their mandates. Within the United States, many federal and state agencies are individually using eDNA data in various applications and developing relevant scientific expertise. A national strategy for eDNA implementation would capitalize on recent scientific developments, providing a common set of next-generation tools for natural resource management and public health protection. Such a strategy would avoid patchwork and possibly inconsistent guidelines in different agencies, smoothing the way for efficient uptake of eDNA data in management. Because eDNA analysis is already in widespread use in both ocean and freshwater settings, we focus here on applications in these environments. However, we foresee the broad adoption of eDNA analysis to meet many resource management issues across the nation because the same tools have immediate terrestrial and aerial applications. 
    more » « less
  4. Duan, Weili (Ed.)
    Empirically quantifying tidally-influenced river discharge is typically laborious, expensive, and subject to more uncertainty than estimation of upstream river discharge. The tidal stage-discharge relationship is not monotonic nor necessarily single-valued, so conventional stage-based river rating curves fail in the tidal zone. Herein, we propose an expanded rating curve method incorporating stage-rate-of-change to estimate river discharge under tidal influences across progressive, mixed, and standing waves. This simple and inexpensive method requires (1) stage from a pressure transducer, (2) flow direction from a tilt current meter, and (3) a series of ADP surveys at different flow rates for model calibration. The method was validated using excerpts from 12 tidal USGS gauging stations during baseflow conditions. USGS gauging stations model discharge using a different more complex and expensive method. Comparison of new and previous models resulted in good R2 correlations (min 0.62, mean 0.87 with S.D. 0.10, max 0.97). The method for modeling tidally-influenced discharge during baseflow conditions was applied de novo to eight intertidal stations in the Mission and Aransas Rivers, Texas, USA. In these same rivers, the model was further expanded to identify and estimate tidally-influenced stormflow discharges. The Mission and Aransas examples illustrated the potential scientific and management utility of the applied tidal rating curve method for isolating transient tidal influences and quantifying baseflow and storm discharges to sensitive coastal waters. 
    more » « less
  5. Abstract AimBiogeographers have used three primary data types to examine shifts in tree ranges in response to past climate change: fossil pollen, genetic data and contemporary occurrences. Although recent efforts have explored formal integration of these types of data, we have limited understanding of how integration affects estimates of range shift rates and their uncertainty. We compared estimates of biotic velocity (i.e. rate of species' range shifts) using each data type independently to estimates obtained using integrated models. LocationEastern North America. TaxonFraxinus pennsylvanicaMarshall (green ash). MethodsUsing fossil pollen, genomic data and modern occurrence data, we estimated biotic velocities directly from 24 species distribution models (SDMs) and 200 pollen surfaces created with a novel Bayesian spatio‐temporal model. We compared biotic velocity from these analyses to estimates based on coupled demographic‐coalescent simulations and Approximate Bayesian Computation that combined fossil pollen and SDMs with population genomic data collected across theF. pennsylvanicarange. ResultsPatterns and magnitude of biotic velocity over time varied by the method used to estimate past range dynamics. Estimates based on fossil pollen yielded the highest rates of range movement. Overall, integrating genetic data with other data types in our simulation‐based framework reduced apparent uncertainty in biotic velocity estimates and resulted in greater similarity in estimates between SDM‐ and pollen‐integrated analyses. Main ConclusionsBy reducing uncertainty in our assessments of range shifts, integration of data types improves our understanding of the past distribution of species. Based on these results, we propose further steps to reach the integration of these three lines of biogeographical evidence into a unified analytical framework. 
    more » « less
  6. Abstract The genomic variation of an invasive species may be affected by complex demographic histories and evolutionary changes during the invasion. Here, we describe the relative influence of bottlenecks, clonality, and population expansion in determining genomic variability of the widespread red macroalgaAgarophyton vermiculophyllum. Its introduction from mainland Japan to the estuaries of North America and Europe coincided with shifts from predominantly sexual to partially clonal reproduction and rapid adaptive evolution. A survey of 62,285 SNPs for 351 individuals from 35 populations, aligned to 24 chromosome‐length scaffolds indicate that linkage disequilibrium (LD), observed heterozygosity (Ho), Tajima's D, and nucleotide diversity (Pi) were greater among non‐native than native populations. Evolutionary simulations indicate LD and Tajima's D were consistent with a severe population bottleneck. Also, the increased rate of clonal reproduction in the non‐native range could not have produced the observed patterns by itself but may have magnified the bottleneck effect on LD. Elevated marker diversity in the genetic source populations could have contributed to the increasedHoand Pi observed in the non‐native range. We refined the previous invasion source region to a ~50 km section of northeastern Honshu Island. Outlier detection methods failed to reveal any consistently differentiated loci shared among invaded regions, probably because of the complexA. vermiculophyllumdemographic history. Our results reinforce the importance of demographic history, specifically founder effects, in driving genomic variation of invasive populations, even when localized adaptive evolution and reproductive system shifts are observed. 
    more » « less
  7. Abstract Tidal freshwater zones (TFZs) are transitional environments between terrestrial and coastal waters. TFZs have freshwater chemistry and tidal physics, and yet are neither river nor estuary based on classic definitions. Such zones have been occasionally discussed in the literature but lack a consistent nomenclature and framework for study. This work proposes a measurable definition for TFZs based on three longitudinal points of interest: (1) the upstream limit of brackish water, (2) the upstream limit of bidirectional tidal velocities, and (3) the upstream limit of tidal stage fluctuations. The resulting size and position of a TFZ is transient and depends on the balance of tidal and riverine forces that evolves over event, tidal, seasonal, and annual (or longer) timescales. The concept, definition, and transient analysis of TFZ position are illustrated using field observations from the Aransas River (Texas, USA) from July 2015 to July 2016. The median Aransas TFZ length was 59.9 km, with a late summer maximum of 66.0 km and a winter minimum of 53.6 km. The TFZ typically (annual median) began 11.8 km upstream from the river mouth (15.4 km winter/11.2 km summer medians) and ended 71.7 km upstream (69.0 km/77.2 km). Seasonally low baseflow in the Aransas River promoted gradual coastal salt encroachment upstream, which shortened the TFZ. However, sporadic large rainfall/runoff events rapidly elongated the TFZ. The TFZ definition establishes a quantifiable framework for analyzing these critical freshwater systems that reside at the nexus of natural and human‐influenced hydrology, tides, and climate. 
    more » « less